11 research outputs found

    Application of quasi-Monte Carlo methods to PDEs with random coefficients -- an overview and tutorial

    Full text link
    This article provides a high-level overview of some recent works on the application of quasi-Monte Carlo (QMC) methods to PDEs with random coefficients. It is based on an in-depth survey of a similar title by the same authors, with an accompanying software package which is also briefly discussed here. Embedded in this article is a step-by-step tutorial of the required analysis for the setting known as the uniform case with first order QMC rules. The aim of this article is to provide an easy entry point for QMC experts wanting to start research in this direction and for PDE analysts and practitioners wanting to tap into contemporary QMC theory and methods.Comment: arXiv admin note: text overlap with arXiv:1606.0661

    Hot new directions for quasi-Monte Carlo research in step with applications

    Full text link
    This article provides an overview of some interfaces between the theory of quasi-Monte Carlo (QMC) methods and applications. We summarize three QMC theoretical settings: first order QMC methods in the unit cube [0,1]s[0,1]^s and in Rs\mathbb{R}^s, and higher order QMC methods in the unit cube. One important feature is that their error bounds can be independent of the dimension ss under appropriate conditions on the function spaces. Another important feature is that good parameters for these QMC methods can be obtained by fast efficient algorithms even when ss is large. We outline three different applications and explain how they can tap into the different QMC theory. We also discuss three cost saving strategies that can be combined with QMC in these applications. Many of these recent QMC theory and methods are developed not in isolation, but in close connection with applications

    Multilevel Quasi-Monte Carlo Uncertainty Quantification for Advection-Diffusion-Reaction

    No full text
    We survey the numerical analysis of a class of deterministic, higher-order QMC integration methods in forward and inverse uncertainty quantification algorithms for advection-diffusion-reaction (ADR) equations in polygonal domains D⊂R2 with distributed uncertain inputs. We admit spatially heterogeneous material properties. For the parametrization of the uncertainty, we assume at hand systems of functions which are locally supported in D. Distributed uncertain inputs are written in countably parametric, deterministic form with locally supported representation systems. Parametric regularity and sparsity of solution families and of response functions in scales of weighted Kontrat’ev spaces in D are quantified using analytic continuation.ISSN:2194-1009ISSN:2194-101

    Quorum Sensing and Quorum Quenching in Soil Ecosystems

    No full text
    corecore